4th Edition of World Nanotechnology Conference

April 19-21, 2021 | Virtual Event

April 25 -27, 2022 | Las Vegas, United States
2020 Speakers

Thomas J Webster

Speaker at World Nanotechnology Conference 2020 - Thomas J Webster
Northeastern University College of Engineering, United States
Title : Hello implantable nanosensors: Goodbye old-fashion hospitals


There is an acute shortage of organs due to disease, trauma, congenital defects, and most importantly, age related maladies. While tissue engineering (and nanotechnology) has made great strides towards improving tissue growth, infection control has been largely forgotten. Critically, as a consequence, the Centers for Disease Control have predicted more deaths from antibiotic-resistant bacteria than all cancers combined by 2050. Moreover, there has been a lack of translation to real commercial products. This talk will summarize how nanotechnology with FDA approval can be used to increase tissue growth and decrease implant infection without using antibiotics. Studies will also be highlighted using nano sensors (while getting regulatory approval). Our group has shown that nanofeatures, nano-modifications, nanoparticles, and most importantly, nanosensors can reduce bacterial growth without using antibiotics. This talk will summarize techniques and efforts to create nanosensors for a wide range of medical and tissue engineering applications, particularly those that have received FDA approval and are currently being implanted in humans.


Joined the Chemical Engineering Department in Fall 2012. The primary focus of our research is the design, synthesis, and evaluation of nanomaterials for various medical applications. This includes self-assembled chemistries, nanoparticles, nanotubes, and nanostructured surfaces. Medical applications include inhibiting bacteria growth, inflammation, and promoting tissue growth. Tissues of particular interest are bone, cartilage, skin, nervous system, bladder, cardiovascular, and vascular. There is also an interest in anti-cancer applications where nanomaterials can be used to decrease cancer cell functions without the use of pharmaceutical agents. There is also a large interest in developing in situ sensors which can sense biological responses to medical devices and respond in real time to ensure implant success. Lastly, there is an interest in understanding the environmental and human health toxicity of nanomaterials.