Title : The development of chitosan-based nano-carrier for highly antibiotic resistant H. pylori eradication therapy
Abstract:
Helicobacter pylori infection usually causes gastrointestinal complications, including gastrointestinal bleeding or perforation, and serious infections may lead to gastric cancer. Amoxicillin is used to treat numerous bacterial infections but is easily decomposed in the gastric acid environment via the hydrolyzation of the β-lactam ring. In this study, we develop chitosan-based nanoparticles loaded with amoxicillin (CAANs) as an H. pylori eradication platform. The CAANs were bio- compatible and could retain the antibiotic activity of amoxicillin against H. pylori growth. The mu- coadhesive property of chitosan and alginate enabled the CAANs to adhere to the mucus layers and penetrate through these to release amoxicillin in the space between the layers and the gastric epi- thelium. The use of this nanoparticle could prolong the retention time and preserve the antibiotic activity of amoxicillin in the stomach and help enhance the eradication rate of H. pylori and reduce treatment time. These CAANs, therefore, show potential for the effective treatment of highly anti- biotic-resistant H. pylori infection using amoxicillin.