Nanotechnology applications continue to drive substantial advancements in fields as diverse as electronics, microcomputing, and biotechnology, as well as health, consumer goods, aerospace, and energy generation. To acquire a more robust quantitative knowledge of matter at the nanoscale, improved modelling and simulation approaches are necessary as progress in nanoscale science and engineering leads to the continuous creation of sophisticated materials and innovative devices. Computational nanotechnology is a branch of nanotechnology dealing with the creation and application of computer-based models for comprehending, analyzing, and forecasting the behavior or features of nanotechnology-related systems. Expert insights into present and new methodologies, opportunities, and challenges linked with computational tools used in nanoscale research are provided in Computational Nanotechnology.
Title : Circumventing challenges in developing CVD graphene on steels for extraordinary and durable corrosion resistance
Raman Singh, Monash University, Australia
Title : Evaluating cytotoxicity of metal-doped tin oxide nanoparticles
Paulo Cesar De Morais, Catholic University of Brasilia, Brazil
Title : Nanotechnology and polymers for sea and ocean sterilization using artificial intelligence with artificial intelligence-engineered nano-polymer membranes
Fadi Ibrahim Ahmed, Al-shujaa bin Al-aslam School, Kuwait
Title : Dual memory characteristics and crystallographic transformations in shape memory alloys
Osman Adiguzel, Firat University, Turkey
Title : Flexible fabric-based nanostructured color-generating film systems
Xinhua Ni, Guangzhou City University of Technology, China
Title : A broadband, angle-insensitive aluminium-based near infra-red absorber for protecting warfighters and sensitive optics technologies
Chayanika Baishya, Indian Institute of Technology Guwahati, India