HYBRID EVENT: You can participate in person at Las Vegas or Virtually from your home or work.

4th Edition of World Nanotechnology Conference

April 25-27, 2022

April 25 -27, 2022 | Las Vegas, USA
2022 Speakers

Functional alkoxysilane mediated synthesis of nobel metal nanoparticles and their role as Metal Enhanced Fluorescence or Fluorescent Resonance EnergyTransfer platforms

Shubhangi shukla, Speaker at Speaker at World Nano 2022 - Shubhangi shukla
North Carolina State University, United States
Title : Functional alkoxysilane mediated synthesis of nobel metal nanoparticles and their role as Metal Enhanced Fluorescence or Fluorescent Resonance EnergyTransfer platforms

Abstract:

Ordered noble metal nanoparticles functionalized with organotrialkoxysilanes [e.g., 2-(3, 4-epoxycyclohexyl) ethyltrimethoxysilane (EETMS), 3-aminopropyltrimethoxysilane (APTMS), and 3-glycidoxypropyltrimethoxysilane (GPTMS)] were used as substrates to investigate the variation in fluorescence intensity of some well-known fluorophores (e.g., fluorescein, rhodamine, and L-tryptophan) based on distance effects and surface plasmonic activity. Anisotropic palladium nanoparticles (PdNPs), gold nanospheres (AuNPs), and silver nanospheres (AgNPs) were synthesized as a function of concentration of EETMS, APTMS, or GPTMS; the organotrialkoxysilane concentration directed the growth rate of particles along certain crystallographic facets. The reactive organic functionalities of alkoxysilanes facilitated the physisorption of probe molecules in proximity to the nanoparticles. The maximum enhancement in fluorescence intensity was observed in the case of APTMS-induced stabilization at hydrodynamic radii (RH) of ∼350 nm as a result of specific interactions with fluorescein molecules; quenching was mostly observed close for interactions between the GPTMS functionalized nanoparticles and fluorophores. The smaller size of L-tryptophan and the absence of effective plasmonic coupling with PdNPs and AuNPs surfaces in the 290–370 nm emission
range resulted in quenching; an appreciable far-field linking with AgNPs was noted around an emission wavelength of 360–375 nm, which resulted in several fold enhancements in intensity. Alkoxysilanes were shown to regulate the spatial control between the functionalized
nanoparticles. As such nanoparticles, alkoxysilane-derived nanomaterials, may serve as promising platforms for metal enhanced fluorescence and fluorescence resonance energy transfer.

Watsapp